Çok Bileşenli Bir Sistem: KZ Pav

Derya Sürgit^{1*} Ahmet Erdem^{1**} ve Edwin Budding²

¹Çanakkale Onsekiz Mart Universitesi, Fizik Bölümü, Çanakkale ²Carter National Observatory, PO Box 2909, Wellington, New Zealand

Özet Bu çalışmada çoklu sistem KZ Pav'ın (IDS 20490-7048 A-BC) yeni tayfsal, fotometrik ve astrometrik çözümlerinden elde edilen sonuçlar sunulmaktadır. Sistemin yüksek çözümlü tayfları, 2007 ve 2008'de Mt. John Üniversitesi Gözlemevinde (Yeni Zellanda) alınmıştır. KZ Pav A çift yıldızının dikine hız ölçümleri iki ayrı yöntem (çapraz eşleme ve KOREL tayfsal ayıklama) kullanılarak elde edilmiş ve modern yöntemlerle çözümlenerek çiftin tayfsal yörünge parametreleri hesaplanmıştır. Wilson-Devinney yönteminin 2007 versiyonu kullanılarak, çiftin dört fotometrik veri seti (1988-9 *BV*, 1998 *V*, Hipparcos ve 2006 *BVRI*) ile yeni dikine hız eğrileri eşzamanlı analiz edildi ve böylece çiftin mutlak parametreleri hesaplandı: M_1 =1.70 ± 0.02 M_☉, M_2 =1.09 ± 0.03 M_☉, R_1 =1.74 ± 0.01 R_☉, R_2 =1.94 ± 0.02 R_{\odot} , L_1 =5.86 ± 0.81 L_☉ and L_2 =2.32 ± 0.40 L_☉. KZ Pav'ın uzaklığı, yıldızlararası soğurma dikkate alındığında, 115 ± 8 pc olarak bulunmuştur.

1 Giriş

Bir Güney Yarımküre yıldızı KZ Pav (BV 482= HD 199005= HIP 103542, V=7.75 mag)'ın değişen doğası, Hoffmeister (1949) tarafından keşfedilmiş ve klasik algol (EA) türü bir çift yıldız olarak sınıflandırılmıştır. Fotografik gökyüzü - düzlem (Sky patrol plate) yöntemiyle belirlenen, sistemin ilk ışık elemanları, Strohmeier (1967) ve Strohmeier ve Knigge (1969) tarafından yayınlanmıştır. Sistemin yörünge dönemi bir güne (0.9499 gün) yakın bulunmuştur. KZ Pav'ın ilk fotometrik gözlemleri UBV renklerinde Shaw (1970, 1971) tarafından yapılmış ve KZ Pav örten çiftinin HJ5231 A-BC (= IDS 20490-7048) coklu sistemin parlak A bileşeni olduğu bulunmuştur. Walker ve Budding (1996), KZ Pav A'nın fotometrik gözlemlerini Auckland Gözlemevinde 50 cm'lik bir Edith - Winstone teleskopu ve Williams Mark I fotometrisi kullanarak yapmıştır. KZ Pav A'nın bir sonraki fotometrik gözlemleri, Budding, Marsden ve Slee (2001) tarafından Güney Queensland Mount Kent Gözlemevi'nde 40 cm'lik Webb teleskobu ve buna takılı SBIG ST6 CCD kamera kullanılarak yapılmıştır. Slee ve ark. (1987), KZ Pav'ın da dahil olduğu 153 aktif soğuk yıldızın 4.8 ve 8.4 GHz bölgesindeki radyo salması ölçümlerini kaydetmişlerdir. Stewart (1989) da benzer radyo salması ölçümlerini hesaplamıştır. Sistemin bir zayıf X-ışını kaynağı olduğu - Schwope ve ark. (2000) tarafından kaydedilmiştir. Wendker

^{*} Yazar Altyazı Metni

^{**} Yazar Altyazı Metni

(1995) ve Budding ve ark. (1998) sistemin radyo salması üzerine çalışmışlardır. Nördstrom ve ark. (2004), yaklaşık 14000 adet F ve G tayf türünden yıldızların metal bolluklarını, dönme hızlarını, kinematik yaşlarını ve salt parlaklıklarını belirlemişlerdir. Bu katalog çalışmasında, KZ Pav A bileşeninin logaritmik Fe/H bolluğu, uzaklığı ve yaşı sırasıyla -0.24 dex, 85 pc ve 2.3 Gyr olarak verilmiştir.

2 Tayfsal gözlemler

KZ Pav'ın tayfsal gözlemleri, 2007 - 2008 yaz dönemlerinde, Mt John Üniversitesi Gözlemevi'nde, 1-m McLennan teleskobu ve buna bağlı HERCULES (High Efficiency and Resolution Canterbury University Large Echelle Spectrograph) tayfçekeri kullanılarak yapılmıştır. Tayf çekerle ilgili detaylı bilgiler Heranshaw ve ark. (2002) tarafından yapılan çalışmalardan elde edilebilir. KZ Pav için, 2007-2008 gözlem sezonlarında toplam 33 adet tayf elde edilmiştir. Yapılan gözlemlere ilişkin bilgiler, Tablo 1'de sunulmuştur. Ayrıca yıldızların tayf türüne göre HD 36079 ve HD 693 olmak üzere iki standart yıldız gözlenmiştir. Gözlemlerin indirgenme aşamasında Canterbury Üniversitesi Fizik ve Astronomi Bölümü için geliştirilen Hercules İndirgeme Yazılım Paketi (HRSP, Hercules Reduction Software Package, versiyon 3, Skuljan ve Wright, 2007) kullanılmıştır. İndirgeme sırasında, echelle tayflar için yapılan standart yöntem kullanılmıştır.

Tablo	1.	\mathbf{KZ}	Pav'ın	tayfsal	gözle	emleri	ile	ilgili	bilgiler.
-------	----	---------------	--------	---------	-------	--------	-----	--------	-----------

-				
No	Görüntü	HJD (+2450000)	S/N	Poz Süresi
		(12130000)		(3)
1	w4349003	54348.82705	54	1467
2	w4349005	54348.84952	51	1613
3	w4349055	54349.24164	72	1503
4	w4351002	54350.83390	98	1000
5	w4351004	54350.84821	88	1000
6	w4351027	54351.05835	95	1447
7	w4351040	54351.10469	103	1200
8	w4351055	54351.22982	90	1300
9	w4351057	54351.24786	92	1300
10	w4362027	54362.02426	111	1800
11	w4362029	54362.04794	98	1800
12	w4364020	54363.85441	100	1514
13	w4364022	54363.87632	93	1600
14	w4364044	54364.04430	80	2000
15	w4364046	54364.06372	73	2100
16	w4375014	54374.90991	98	1800
17	w4805013	54804.94628	70	1200
18	w4806006	54805.87012	105	1290
19	w4806008	54805.88768	93	1200
20	w4806010	54805.90494	116	1200
21	w4806012	54805.92295	116	1200
22	w4806014	54805.93943	111	1200
23	w4806016	54805.95796	113	1200
24	w4806018	54805.97515	122	1200
25	w4806020	54805.99323	121	1200
26	w4806022	54806.01009	113	1200
27	w4806024	54806.02660	84	1148
28	w4806025	54806.04432	112	1200
29	w4806027	54806.06113	99	1094
30	w4806029	54806.07957	107	1200
31	w4806031	54806.10097	102	1200
32	w4806033	54806.11756	123	1200
33	w4806035	54806 13633	113	1200

Dizi	Dalgaboyu	Baskin
No	Aralıgi (A)	Tayfsal Çizgiler
88	6435-6460	FeI (6430.844)
		WI (6435.24)
		CaI (6439.075)
		VI (6452.34)
		CaII (6456.87)
93	6102-6142	CaI (6102.72)
		CaI (6122.22)
		FeI (6137.694)
108	5265 - 5280	Ca I (5265.56)
		FeI (5266.555)
		CaI (5270.27)
		TiIII (5278.12)
110	5151 - 5188	MgI (5167.3216)
		MgI (5172.6843)
		MgI (5183.6042)
115	4918-4958	SiII (4932.80)
		FeI (4957.597)
127	4480-4490	MgI (4481.130)
		FeI (4489.739)

Tablo 2. KZ Pav'ın dikine hız ölçümlerinde kullanılan tayf dizileri ve tayf çizgileri.

 ${\bf Sekil 1.}$ 110 ve 127 nolu tayf dizilerine yapılan KOREL fitleri ve bileşenlere ilişkin ayrıştırılmış tayflar.

Parameter	Value
P_{orb} (gün)	0.9498802 (sbt)
T_0 (HJD)	$54361.8036{\pm}0.0007$
$V_{\gamma} \; (\mathrm{km \; s^{-1}})$	-1.85 ± 0.42
q	$0.65 {\pm} 0.01$
$K_1 \; ({\rm km \; s^{-1}})$	$118.39 {\pm} 0.72$
$K_2 \; ({\rm km \; s^{-1}})$	$181.06 {\pm} 0.73$
$a_1 \sin i$ (AU)	$0.0103 {\pm} 0.0001$
$a_2 \sin i$ (AU)	$0.0158 {\pm} 0.0001$
$M_1 \sin^3 i (M_\odot)$	$1.598{\pm}0.006$
$M_2 \sin^3 i (M_\odot)$	$1.045 {\pm} 0.006$

Tablo 3. KZ Pav A'nın yörünge elemanları.

KZ Pav'ın dikine hız ölçümlerinin belirlenebilmesinde, dalga kalibrasyonu ve normalizasyonu yapılan tayflara çapraz eşleme (cross-correlation) ve Fourier ayıklama (Fourier disentangling, KOREL, Hadrava, 2004) olmak üzere iki farklı yöntem kullanılmıştır. Dikine hızların belirlenmesinde kullanılan yöntemler ve elde edilen sonuçlara ilişkin bilgiler ayrıntılı olarak Sürgit ve ark.(2010)'nın çalışmasında sunulmuştur. Dikine hızlarının okunması sırasında gürültünün en az olduğu ve çizgilerin net olarak seçildiği tayf dizileri tercih edilmiştir. Seçilen tayf dizileri 88, 93, 108, 110, 115 ve 127 nolu diziler olup bu tayf dizilerinde görülen en belirgin tayf çizgilerine ilişkin bilgiler Tablo 2'de verilmiştir. Sistemin yörünge parametrelerinin belirlenmesinde ELEMDR77 (Teodor Pribulla, 2008; özel haberleşme) yazılımı kullanılmıştır. KOREL iterasyonları sonucunda elde edilen yörünge elemanları, Tablo 3'te verilmiş; tayflara uygulanan en iyi teorik fitler ve bileşenlerin ayıklanmış tayfları, Şekil 1'de gösterilmiştir.

3 Işık ve dikine hız eğrilerinin eşzamanlı çözümü

KZ Pav'ın WB 1988-9 BV ışık eğrileri, BMS 1998 V ışık eğrisi ve bu çalışmadan elde edilen 2006 BVRI fotometrik ışık eğrileri ile dikine hız eğrileri, van Hamme ve Wilson (2007) tarafından güncellenen Wilson-Devinney (WD) (Wilson ve Devinney 1971) programının 2007 versiyonu kullanılarak eş zamanlı olarak analiz edildi. İterasyonlar sırasında serbest bırakılan ve sabit alınan parametrelere ilişkin bilgiler Sürgit ve ark. (2010)'nın çalışmasında ayrıntılı olarak belirtilmiştir.

KZ Pav çoklu bir sistem olduğu için üçüncü ışık katkısı $(l_3/(l_{top}))$, WD programı çalıştırılırken, serbest bırakılmıştır. İterasyonlar sırasında ilk olarak ayrık çift yıldızlar için olan Mode 2 kullanılmıştır. Fakat iterasyonlar ikinci bileşenin Roche lobunu doldurduğunu göstermesi üzerine Mode 5 geçilerek nihai çözüme ulaşılmıştır. Çözüm sonuçları, Tablo 4'te verilmektedir. Gözlemler ile gözlemleri en iyi temsil eden teroik eğriler, Şekil 2(a),(b) ve (c)'de gösterilmiştir. Şekil 2(a)'da Hipparcos ışık eğrisi için üçüncü ışık olmadan elde edilen teorik ışık eğrisi XVII. Ulusal Astronomi Kongresi 31 Ağustos - 4 Eylül 2010, Adana

Şekil 2. (a) Best WD fits to the 1988-9 BV light curves, 1998 V light curve and the HIPPARCOS light curve, (b) best WD fits to 2006 BVRI light curves, (c) best WD fits to the radial velocity curves. Solid black line for the RVs includes proximity effects, while the dotted line is for the Keplerian orbit. (d) Roche geometry of the system.

ayrıca örnek olarak sunulmuştur. Şekil 2(d)'de sistemin Roche konfigürasyonu da çizdirilmiştir. KZ Pav çoklu sistemin A-BC bileşenlerinin BVRI renklerindeki parlaklıkları hesaplanmış ve hataları ile birlikte Tablo 5'te verilmiştir.

Tablo 4. KZ Pav A çift yıldızının ışık ve dikine hız eğrilerinin eşzamanlı çözümünden elde edilen parametreler ve hataları (van Hamme & Wilson 2007).

Parameter	Value
$a(R_{\odot})$	$5.72 {\pm} 0.02$
$Phase \ shift$	$0.0006 {\pm} 0.0001$
$V_{\gamma} \ (\mathrm{km \ s^{-1}})$	$-1.85 {\pm} 0.45$
$q_{corr} = m_2/m_1$	$0.641 {\pm} 0.003$
$i \; (deg)$	$86.29 {\pm} 0.21$
T_1 (K)	6820
T_2 (K)	5116 ± 9
Ω_1	$3.989{\pm}0.021$
Ω_2	3.139
$L_1/L_{tot} \ (B)^1$	$0.506 {\pm} 0.004$
$L_1/L_{tot} \ (V)^1$	$0.456 {\pm} 0.003$
$L_1/L_{tot} \ (V)^2$	$0.414{\pm}0.004$
$L_1/L_{tot} (V_{Hip})^3$	$0.454{\pm}0.004$
$L_1/L_{tot} \ (B)^4$	$0.505 {\pm} 0.005$
$L_1/L_{tot} \ (V)^4$	$0.455 {\pm} 0.006$
$L_1/L_{tot} \ (R)^4$	$0.441 {\pm} 0.005$
$L_1/L_{tot} (I)^4$	$0.409 {\pm} 0.006$
$L_3/L_{tot} \ (B)^1$	$0.369{\pm}0.003$
$L_3/L_{tot} (V)^1$	$0.379 {\pm} 0.003$
$L_3/L_{tot} (V)^2$	$0.429 {\pm} 0.004$
$L_3/L_{tot} (V_{Hip})^3$	$0.372 {\pm} 0.005$
$L_3/L_{tot} (B)^4$	$0.368 {\pm} 0.004$
$L_3/L_{tot} (V)^4$	$0.366 {\pm} 0.005$
$L_3/L_{tot} (R)^4$	$0.353 {\pm} 0.005$
$L_3/L_{tot} \ (I)^4$	$0.359{\pm}0.005$
$r_1(mean)$	$0.304{\pm}0.002$
$r_2(mean)$	$0.340{\pm}0.001$
$\Sigma W(O-C)^2$	0.1698

 $^{^1}$ WB 1988-9 BV light curve, 2 BMS 1998 V light curve, 3 HIPPARCOS and 4 2006 BVRI photometric data.

4 Sonuçlar ve Tartışma

KZ Pav A çift yıldızının 2007-2008 yaz sezonunda elde edilen yüksek çözünürlüklü - tayfları, iki farklı yöntem (çapraz eşleme=cross-correlation ve KOREL programı (Hadrava, 2004)) kullanılarak analiz edildi ve sistemin tayfsal

Tablo 5. KZ Pav (A-BC) sisteminde yıldızların BVRI filtrelerindeki parlaklıkları ve ortalama hataları.

magnitudes	B	V	R	Ι	Err.
m_1	8.88	8.60	8.28	8.07	0.02
m_2	10.38	9.62	9.11	8.69	0.03
m_3	9.22	8.52	8.52	8.21	0.03

yörünge elemanları hesaplandı. KZ Pav A çiftinin WB 1988-9 BV, BMS 1998 V, Hipparcos V ve bu çalışmadan elde edilen 2006 BVRI ışık eğrileri ile bu çalışmadan elde edilen dikine hız eğrileri, Wilson-Devinney kodunun 2007 versiyonu kullanılarak, eşzamanlı çözüldü ve çift sistemin mutlak parametreleri güvenilir bir şekilde elde edildi. Sonuçlar ve hataları, Tablo 6'da verilmektedir. 4 ayrı fotometrik veri seti ve 2 dikine hız veri setinin eşzamanlı çözümü, KZ Pav A'nın klasik Algol türü (yar-ayrık) bir çift sistem olduğunu ve birinci bileşenin de Roche lobunun 80%'ini doldurduğunu göstermektedir. KZ Pav A çiftinin uzaklığı belirlenirken; Schegel ve ark. (1998)'nın yıldızlararası madde/tozun kızılötesi ışınım salma modelinden renk artığı $E_{\infty}(B-V)=0.049$ olarak tahmin edildi. Bu değere göre Bahcall ve Soneria (1980)'nın yönteminden $E_d(B-V)=0.023$ renk artığı belirlendi ve sistemin V renginde yıldızlararası sönümlemesi, $A_V = 3.1E_d(B-V)$ olarak hesaplandı. Böylece yıldızlararası soğurmayı gözönüne alarak, aşağıdaki uzaklık modülü formülünden KZ Pav A çiftinin uzaklığı 115±8 pc olarak belirlenmiştir.

Tablo 6.	KZ Pa	v A çi	ft yıldızının	mutlak	parametreleri
----------	-------	--------	---------------	--------	---------------

Parameter	Primary	Secondary
$M (M_{\odot})$	$1.70 {\pm} 0.02$	$1.09 {\pm} 0.03$
$R~({ m R}_{\odot})$	$1.74{\pm}0.01$	$1.94{\pm}0.02$
$\log g \ (\text{cgs})$	$4.19{\pm}0.02$	$3.90{\pm}0.01$
T (K)	$6820{\pm}200$	$5116{\pm}209$
M_{bol}	$2.83{\pm}0.15$	$3.84 {\pm} 0.19$
$L (L_{\odot})$	$5.86{\pm}0.81$	$2.32 {\pm} 0.40$
M_V	$2.83{\pm}0.15$	$4.05{\pm}0.19$
$M_V (system)$	2.52	± 0.15
$d~(\mathrm{pc})$	11	5 ± 8

KZ Pav A çiftinin, Popper (1998)'ın tutulma yöntemine, ilk Hipparcos paralaksına (ESA, 1997) ve yeni Hipparcos paralaksına (van Leeuwen, 2007) göre uzaklığı, sırasıyla, 125 ± 11 pc, 99 ± 55 pc ve 133 ± 66 pc çıkmaktadır. Muhtemelen KZ Pav'ın çoklu sistem olmasından dolayı Hipparcos paralaksı oldukça büyük hataya sahiptir. Dolayısıyla bu çalışmada elde edilen uzaklık değeri (115±8 pc), farklı yöntemlerle bulunan uzaklık değerleri arasında kabul edilebilir gözükmektedir.

Kaynaklar

- Bahcall J. N., Soneira R. M., 1980, ApJS, 44, 73
- Budding E., Marsden S. C., Slee B., 2001, PASA, 18, 140
- Budding E., Slee O. B., Jones K., 1998, PASA, 15, 183
- ESA, 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200. ESA, Noordwijk
- Hadrava P., 2004, ASPC, 318, 86
- Hearnshaw J. B., Barnes S. I., Kershaw G. M., Frost N., Graham G., Ritchie R., Nankivell G. R., 2002, ExA, 13, 59
- Hoffmeister C., 1949, Astron. Nachr., 12, No.1
- Nordström B. et al., 2004, A&A, 418,989
- Popper D. M., 1998, PASP, 110, 919
- Strohmeier W., 1967, IBVS, 184
- Strohmeier W., Knigge R., 1969, MNSSA, 28, 75
- Shaw J. S., 1970, PhD thesis, University of Pennsylvania
- Shaw J. S., 1971, BAAS, 3, 403
- Slee O. B., Nelson G. J., Stewart R. T., Wright A. E., Innis J. L., Ryan S. G., Vaughan, A. E., 1987, MNRAS, 227, 467
- Schlegel D. J., Finkbeiner D. P., Davis M., 1998, ApJ, 500, 525
- Schwope A. et al., 2000, AN, 321, 1
- Skuljan J., Wright D., 2007, "HRSP Hercules Reduction Software Package", vers. 3, Univ. Canterbury, New Zealand
- Stewart R. T., 1989, PASAu, 8, 60
- Sürgit D., Erdem A. ve Budding E., 2010, MNRAS, 407, 497.
- van Hamme W., Wilson R.E., 2007, ApJ, 661, 1129
- van Leeuwen F., 2007, A&A, 474, 653
- Walker W. S. G., Budding E., 1996, Obs, 116, 149
- Wendker H. J., 1995, A&AS, 109, 177
- Wilson R. E., Devinney E. J., 1971, ApJ, 166, 605